The Famous Poisonings in History
DOI:
https://doi.org/10.59667/sjoranm.v20i1.14Keywords:
poisoning, pharmacology, toxicology, celebrity, historyAbstract
The use of poisons spans human history, serving as tools for war, execution, assassination, revenge, and political control. Ancient texts like the "Rig Veda" mention poisoned weapons, and many civilizations used natural toxins—such as frog skin, snake venom, and plant extracts—for lethal purposes. Mythology reflects deep knowledge of poisons. Medea attempted to poison Theseus with aconite to protect her son’s claim to the throne. Hercules used Hydra’s venom to create deadly arrows. In historical contexts, figures like Socrates were executed with poison—hemlock in his case—which was reserved for elite criminals due to its cost. Classical toxicology began in Ancient Greece and continued through the Roman Empire. During Rome’s imperial era, poisons were commonly used in power struggles. Tiberius’ reign saw suspected poisonings of his potential successors, including Germanicus and Drusus. Caligula ultimately rose to power through such intrigue, killing his rivals. Notable toxicologists include Mateo Orfila, who advanced forensic detection techniques in the 19th century, and Juan Bautista Peset Aleixandre, who developed early devices to detect toxic gases in the blood. Natural poisons were also studied in modern science. Cobra venom contains dozens of toxic proteins, many of which disrupt nerve and muscle function. Aconitine, found in "Aconitum napellus", binds to sodium channels in nerves, keeping them open and causing fatal disruptions in cell signaling. Another plant-based toxin, protoanemonin from buttercups, causes painful spasms and ulcers, giving rise to the term "sardonic smile". In Renaissance and Baroque Europe, poisoners like Locusta in Nero’s Rome and La Voisin in Louis XV’s court gained notoriety for their lethal skills. They supplied aristocrats with toxic mixtures to remove rivals or secure inheritances. One infamous potion, “Aqua Tofana”, was linked to hundreds of deaths, possibly including that of Mozart. Venice’s secretive Council of Ten used poison for state security, relying on anonymous citizen reports and aconite-based poisons. In France, women like the Marquise de Brinvilliers and La Voisin were executed for mass poisonings. These individuals often disguised their poisons as medicine or spiritual remedies, exploiting trust and social status. Through myth, science, and scandal, poisons have left an indelible mark on human history, both as instruments of death and as subjects of fascination and fear.
References
1) Gisbert Calabuig, J. A. Medicina legal y Toxicología, ed. Elsevier Masson, Barcelona 2004. https://books.google.es/books
2) Gu Xiangjin, Xu Jin, Ma Banyou, Chen Gong, Gu Peiyuan, Wei Dong, Hu Weixing; Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism. Chin J Traumatol 2014; 17(1): 1-7. https://mednexus.org/
3) Seung-Woo Kim, Chae-Moon Lim, Hye-Kyung Lee, Ja-Kyeong Lee; The use of Stronger Neo-Minophagen C, a glycyrrhizin-containing pre-paration, in robust neuroprotection in the post-ischemic brain. Anat Cell Biol 2011; 44: 304-313. https://doi.org/10.5115/acb.2011.44.4.304
4) Shohreh Fakhari, Kamal Abdolmohammadi, Yaser Panahi, et al.; Glycyrrhizin attenuates tissue injury and reduces neutrophil accumulation in experimental acute pancreatitis. Int J Clin Exp Pathol 2014; 7(1): 101-109. https://pmc.ncbi.nlm.nih.gov/articles/PMC3885464/
5) Ming L. J., and Yin A,C; Therapeutic effects of glycyrrhicic acid. Nat. Proc. Commun. 2013; 8(3): 415-418. https://doi.org/10.1177/1934578X1300800335
6) Omar H. R., Komarova I., El-Ghoenemi M., et al.; Licorice abuse: Time to send a warning message. Ther. Adv. Endocrinol. Metab. 2012; 3(4): 125-138.https://doi.org/10.1177/2042018812454322
7) Maeda Y., Inaba N., Aoyagi M., et al.; Pseudoaldosteronism caused by combined administration of cilostazol and glycyrrhizin. Inter. Med. 2008; 47: 1345-8. https://doi.org/10.2169/internalmedicine.47.1080
8) Johns C.; Glycyrrhizic acid toxicity caused by con-sumption of licorice candy cigars. CJEM 2009; 11(1): 94-96. doi:10.1017/S1481803500010988
9) van Beers E. J., Stam J., and van den Bergh V. H.; Licorice consumption as cause of posterior reversible encephalopathy syndrome: a case report. Critical Care 2011; 15: R64. https://doi.org/10.1186/cc10040
10) Celik M., Karakus A., Zeren C., et al.; Licorice induce hipokalemia, edema and thrombocytopenia. Hum. Exp. Tox. 2012; 31(12): 1295-8. https://doi.org/10.1177/0960327112446843
11) Meltem A.C., Figen C., Nalan M.A., et al.; A hypokalemic muscular weakness after licorice ingestion: A case report. Cases Journal 2009; 2: 8053. https://doi.org/10.4076/1757-1626-2-8053
12) Shah M., Williams Caggarwal A. and Choudhry W.M.; Licorice related rhabdomyolysis: A big price for a sweet tooth. Clin. Nephrol 2012; 77(6): 491-5. https://doi.org/10.5414/cn107011
13) Daugherty C.C.; The death of Socrates and the toxicology of hemlok. J. Med. Biogr. 1995; 3(3): 178-182. https://doi.org/10.1177/096777209500300310
14) Schep L.J., Slaughter R.J., Becket G. and Beasley D.M.; Poisoning due to water hemlock Clin. Toxicol. (Phila.) 2009; 47(4): 270-8. https://doi.org/10.1080/15563650902904332
15) Lung D.D., Scott B.J., Wu A.H. and Gerona R,R.; Prolonged ventilatory failure and flaccid qua-driparesis after ingestion of poison hemlock. J. Muscle Nerve 2013; 48(5): 823-7. https://doi.org/10.1002/mus.23916
16) Vetter J.; Poison hemlock (Conium maculatum L.). Food Chem. Toxicol. 2004; 42(9): 1373-82. https://doi.org/10.1016/j.fct.2004.04.009
17) Uwai K., Ohashi K., Takaya Y, et al.; Exploring the structural basis of neurotoxicity in C17-poly-acetylenes isolated from water hemlock. J. Med. Chem. 2000; 16(13): 4508-15. https://doi.org/10.1021/jm000185k
18) Heath K.B.; A fatal case of apparent water hemlock poisoning. Vet. Hum. Toxicol. 2001; 43(1):35 - 6. https://europepmc.org/article/med/11205076
19) Mathisen A.; Mineral Waters, Electricity and Hemlock: Devising Therapeutics for Children in Eighteenh-Century Institutions. Med. Hist. 2013; 57(1): 28-44. https://doi.org/10.1017/mdh.2012.79
20) Panter K.E., Keeler R.F. and Baker D.C.; Toxicoses in livestock from the hemlocks (Conium and Cicuta spp). J. Anim. Sci. 1988; 66: 2407 -2413. https://doi.org/10.2527/jas1988.6692407x
21) Panter K.E., James L.E. y Gardner D.R,; Lupines, poison-hemlock and Nicotiana spp: toxicity and teratogenocity in livestock. J. Nat. Toxins 1999; 8(1): 117-34. https://europepmc.org/article/med/10091132
22) Panter K.E., Gardner D.R. Stegelmeier B.L. et al.; Water hemlock poisoning in cattle: Ingestion of inmature Cicuta Maculata seed as the probable cause. J. Toxicon 2011; 57(1): 157-61. https://doi.org/10.1016/j.toxicon.2010.11.009
23) Álvarez-Gómez J.A., Estelles M.E., Fabregat J., Pérez F. A. y Brugger A.J.; Pharmacokinetics and pharmacodynamics of Rocuronium Bromide in adult patients. European Journal of Anaesthesiology,1994; II sup.9:53-56. https://europepmc.org/article/med/7925209
24) Kyle Munzenrieder; North Shore Medical Center Sued for Accidentally Injecting Grandpa With Execution Drug. Miami New Times 18 Nov, 2011. https://www.miaminewtimes.com/news
25) Ramasamy S., Liu C.Q., Tran H. et al.; Principles of antidote pharmacology: an update on prophylaxis, pos-exposure treatment recomendations and research initiatives for biological agents. Brit. J. Pharmacol. 2010; 161: 721-748. https://doi.org/10.1111/j.1476-5381.2010.00939.x
26) Gasnier C., Laurant C., Decroix-Laporte C. et al.; Defined plant extracts can protect human cells against combined xenobiotic effects. J. Occup, Med. Toxicol. 2011; 6: 3-13. https://doi.org/10.1186/1745-6673-6-3
27) Malih I., Ahmad Rusmili M.R., Tee T.Y. et al.; Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics 2014; 96: 240-52. https://doi.org/10.1016/j.jprot.2013.11.012
28) Rajesh A. and Yenugu S.; Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster. PLoS ONE 2013; 7(3): e32633. https://doi.org/10.1371/journal.pone.0032633
29) Carbajal-Saucedo A., Floriano R.S., Dal Belo C.A. et al.; Neuromuscular activity of Micrurus Laticollaris (Scamata: Elapidae) venom in vitro. Toxins 2014; 6: 359-370. https://doi.org/10.3390/toxins6010359
30) Sunagar K., Jackson T.N.V., Undheim E.A.B. et al.; Three fingered RAVERs, rapid accumulation of variations in exposed residues of snake venom toxins. Toxins 2013; 5: 2172-2208. https://doi.org/10.3390/toxins5112172
31) Bourne Y., Talley T.T., Hansen S.B. et al.; Crystal structure of Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. The EMBO Journal 2005; 24: 1512-1522. https://doi.org/10.1038/sj.emboj.7600620
32) van den Born H.K.L., Radik Z., Marchot P. et al.; Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase. Protein Science 1995; 4:703- 715 https://doi.org/10.1002/pro.5560040410
33) Chung-Chuan L., Jui-Hung H., You-Chen S. et al. Effect of D57N mutation on membrane activity an molecular unfolding of cobra cardiotoxin Biophysical Journal 1998; 75: 2382-88 10.1016/S0006-3495(98)77682-9
34) Kornhauser R., Ishister G., O´Leary M.A. et al.; Cross neutralisation of neurotoxic effects of egyptian cobra venom with commercial Tiger snake antivenom. Basic & Clinical Pharma-cology & Toxicology 2013; 112: 138-143 https://doi.org/10.1111/j.1742-7843.2012.00925.x
35) Eren SH, Demirel Y, Ugurlu S, Korkmaz I, Aktas C, Güven FM; Mushroom poisoning: retrospective analysis of 294 cases. Clinics (Sao Paulo). 2010; 65(5): 491–496. https://doi.org/10.1590/S1807-59322010000500006
36) Erden A., Esmeray K., Karagöz H., et al.; Acute liver failure caused by mushroom poisoning: A case report and review of the literature. International Medical Case Reports Journal 2013; 6: 85–90. https://doi.org/10.2147/IMCRJ.S53773
37) Broussard CN, Aggarwal A, Lacey SR, et al.; Mushroom poisoning from diarrhea to liver transplantation. Am J Gastroenterol. 2001; 96(11): 3195–3198. https://doi.org/10.1111/j.1572-0241.2001.05283.x
38) Tong TC, Hernandez M, Richardson WH, et al.; Comparative treatment of alpha-amanitin poisoning with N-acetylcysteine, benzylpenicillin, cimetidine, thioctic acid, and silybin in a murine model. Ann Emerg Med. 2007; 50(3): 282–288. https://doi.org/10.1016/j.annemergmed.2006.12.015
39) Magdalan J, Ostrowska A, Piotrowska A, et al.; Failure of benzylpenicillin, N-acetylcysteine and silibinin to reduce alpha-amanitin hepatotoxicity. In Vivo. 2009; 23(3): 393–399. https://iv.iiarjournals.org/content/23/3/393/tab-article-info
40) Grillo C., Chiachiarelli S., Gauchi E., et al.; The Binding of Silibinin to ERp57. J. Chem. Biol. Interac. 2014; 213: 37-43. https://doi.org/10.1016/j.cbi.2014.02.005
41) Sakono M., Seko A., Takeda Y. and Ito Y.; PDI family protein ERp29 forms 1:1 complex whith lectin chaperone calreticulin. Biochem. Biophys. Res. Commun. 2014; 452(1):27-31. https://doi.org/10.1016/j.bbrc.2014.08.041
42) Turano C., Gaucci E., Grillo C. and Chichiarelli S.; ERp57/GRP58: a protein with multiple functions Cell. Mol. Biol. Lett. 2011; 16(4): 53963. https://doi.org/10.2478/s11658-011-0022-z
43) Sonnenbilcher J., Scalera F., Sonnenbilcher I., et al.; Stimulatory effects of silibinin and silicristin from the milk thistle Sylibum marianum on kidney cells. J. Pharmacol. and Eper. Ther. 1999; 290: 1375-1383. https://doi.org/10.1016/S0022-3565(24)35045-1
44) Tewari-Singh N, Jain AK, Inturi S, Agarwal C, White CW, et al.; Silibinin Attenuates Sulfur Mustard Analog-Induced Skin Injury by Targeting Multiple Pathways Connecting Oxidative Stress and Inflammation. PLoS ONE 2012; 7(9): e46149. https://doi.org/10.1371/journal.pone.0046149
45) Vaid M. and Katiyar S.K.; Molecular mechanism of inhibition of photocarcinogenesis by silymarin a phytochemical from milk thistle (Sylibum Marianum L. Gaertn). Int J Oncol. 2010; 36(5): 1053–1060. https://doi.org/10.3892/ijo_00000586
46) Aureli C., Gaucci E., Arcangeli V. et al.; ERp57/PDIA3 binds specific DNA fragments in a melanoma cell line. Gene. 2013; 524(2): 390-5 https://doi.org/10.1016/j.gene.2013.04.004
47) Gaucci E., Altieri E., Turano C. and Chiciarelli S.; The protein ERp57 contributes to EGF receptor signaling and internalization in MDA-MB-468 breast cancer cells. J. Cell. Biochem. 2013; 114(11): 2461-70 https://doi.org/10.1002/jcb.24590
48) Yaghmaei, P., Azarfar, K., Dezfulian, M. et al.; Silymarin effect on amyloid-β plaque accumulation and gene expression of APP in an Alzheimer’s disease rat model. DARU J Pharm Sci 22, 24 (2014). https://doi.org/10.1186/2008-2231-22-24
49) Benn M., Yelland L.J. and Parvez M.; Ranunculin. Acta Cryst. 2010. E66, o2503. https://doi.org/10.1139/v68-122
50) Sedivy, C., Piskorski, R., Müller, A. et al.; Too Low to Kill: Concentration of the Secondary Metabolite Ranunculin in Buttercup Pollen does not Affect Bee Larval Survival. J Chem Ecol 38, 996–1002 (2012). https://doi.org/10.1007/s10886-012-0153-3
51) Hill R. and Van Heynengen R.; Ranunculin: The precursor of the vesicant substance of the buttercup. Biochem J. 1951;49(3):332-5 https://pmc.ncbi.nlm.nih.gov/articles/PMC1197509/
52) Akbulut, S., Semur, H., Kose, O. et al.; Phytocontact dermatitis due to Ranunculus arvensis mimicking burn injury: report of three cases and literature review. Int J Emerg Med 4, 7 (2011). https://doi.org/10.1186/1865-1380-4-7
53) Bhargaya K.P., Kishor K., Pant M.C. and Saxena P.R.; Identification of triptamine derivatives in Ranunculus scleratus L. Brit J. Pharmacol. 1965;25:743-750. https://doi.org/10.1111/j.1476-5381.1965.tb01796.x
54) Savage A. and Hutchings A.; Poisoned by herbs. Brit. Med. Jour. 1987; 295:1650-1. https://doi.org/10.1136/bmj.295.6613.1650
55) Cai S., Li X.,; The effect of the extract from Ranunculus japonicus on [Ca2+]i inside rabbit VSMC by serologic pharmacological test. Zhong Yao Cai. 2004 ;27(10):741-4. https://europepmc.org/article/med/15850355
56) Edwards S.E., Martz K.E., Rogge A. and Heinrich M; Edaphic and phytochemical factors as predictors of equine grass sickness casses in UK. Front. Pharmacol. 2010;1:122. https://doi.org/10.3389/fphar.2010.00122
57) Kerr L.A., Adair, H. S. and Boyd G. D.; Suspected buttercup (Ranunculus bulbosus) toxicosis with secondary photosensitization in a Charolais heifer. Vet. Hum. Toxicol. 1992;34(3): 238-9. https://europepmc.org/article/med/1609496
58) Merz K.H. and Jochims K.; Feasibility study of non-clinical safety assessments on homeopathic preparations using the example of protoanemonin in Pulsatilla pratensis L. Regul Toxicol Pharmacol. 2013;66(1):104-8. https://doi.org/10.1016/j.yrtph.2013.03.004
59) Jia, D., Han, B., Yang, S. et al.; Anemonin Alleviates Nerve Injury After Cerebral Ischemia and Reperfusion (I/R) in Rats by Improving Antioxidant Activities and Inhibiting Apoptosis Path-way. J Mol Neurosci 53, 271–279 (2014). https://doi.org/10.1007/s12031-013-0217-z
60) Enciclopedia Católica “on line” https://es.catholic.com/encyclopedia?page=1
61) Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 1980;20: 15-43 https://doi.org/10.1146/annurev.pa.20.040180.000311
62) Borcsa B., Fodor L., Csupor I., Frorgo P,. Molnar A. Hohmann J.; Diterpene alkaloids from the roots of Aconitum moldavicum an assesment of Nav 1,2 sodium channel activity of Aconitum alka-loids Planta Med. 2014; 80:231-6. https://doi.org/10.1055/s-0033-1360278
63) Ritchie JM; A pharmacological approach to the structure of sodium channels in myelinated axons. Annu Rev Neurosci. 1979;2:341-362. https://doi.org/10.1146/annurev.ne.02.030179.002013
64) Cao Z., George J., Gerwik W.H., Baden D.G. Rainer J.D. and Murray T.F.; Influence of lipid-soluble gating modifier toxins on soddium influx in neocortical neurons. J. Pharmacol. Exper. Ther. 2008;326:604-13. https://doi.org/10.1124/jpet.108.138230
65) Yamanaka H., Doi A., Ishibashi H. and Akaike N; Aconitine facilitates spontaneous transmitter release at rat ventromedial hypothalamic neurons. Br. J, Pharmacol 2002;135:816-22. https://doi.org/10.1038/sj.bjp.0704517
66) Chan T. Y. K.; Aconitum Alkaloid Poisoning Related to the Culinary Uses of Aconite Roots. Toxins 2014;6:2605-11. https://doi.org/10.3390/toxins6092605
67) Jiang Z.H., Xie Y., Zhou H., Wang J.R., Liu Z.Q., Wong Y.F., Cai X., Xu H.X. and Liu L.; Quantification of Aconitum alkaloids in aconite roots by a modified RP-HPLC method. Phytochem Anal. 2005 Nov-Dec;16(6):415-21. https://doi.org/10.1002/pca.861
68) Chan T. Y.; Aconite poisoning. Clin Toxicol (Phila). 2009;47(4):279-85. https://doi.org/10.1080/15563650902904407
69) Ono T., Hayashida M., Tezuka A., et al.; Antagonist effects of tetrodotoxin on aconitine induced cardiac toxicity. J. Nippon Med. Sch. 2013; 30:350-61. https://doi.org/10.1272/jnms.80.350
70) Zhao Z., Yin Y., Wu H., Jiang M., et al.; Arctigenin, a Potential Anti-Arrhythmic Agent, Inhibits Aconitine-Induced Arrhythmia by Regulating Multi-Ion Channels. Cell. Physiol. Biochem. 2013;32: 1342-53. https://doi.org/10.1159/000354532
71) Bicker W., Monticelli F., Bauer A., Roider G. And Keller T.; Quantification of aconitine in post-mortem specimens by vakidated liquid chromatography-tandem mass spectrometry method: three case reports on fatal “monks-hood” poisoning. Drug Test Anal. 2013;5: 753-62. https://doi.org/10.1002/dta.1501
72) Niitsu H., Fujita Y., Fujita S., Kumagai R., Takamiya M, Aoki Y, Dewa K; Distribution of Aconitum alkaloids in autopsy cases of aconite poisoning. Forensic Sci Int. 2013 ;227(1-3): 111-7. https://doi.org/10.1016/j.forsciint.2012.10.021
73) Gaillard Y., Regenstreif P. and Fanton L.; Modern toxic antipersonnal projectiles. Am. J. Forensic Med. Pathol. 2014;35:258-64. https://doi.org/10.1097/PAF.0b013e318288abe8
74) Ratnaike R.N; Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003;79:391-6. https://doi.org/10.1136/pmj.79.933.391
75) Shen S., Li X-F., Cullen W.R., Weinfel M. and Le X.C.; Arsenic binding proteins. Chem. Rev. 2013; 113:7769-92. https://pubs.acs.org/doi/10.1021/cr300015c
76) Tournel G., Houssaye C., Humbert L., Dhorne G., Gnemmi V., Becert-Robert A., Nisse P., He-douin V., Gosset D. and Lhemitte M.; Acute arsenic poisoning: clinical, toxicological, histopathological and forensic features. J. Forensic Sci. 2011;56 Suppl. 1 S275-9. https://doi.org/10.1111/j.1556-4029.2010.01581.x
77) Vahidnia A., van der Voet G. B. and de Wolff F. A.; Arsenic neurotoxicity - a review. Hum. Exp. Toxicol. 2007;26:823-32. https://doi.org/10.1177/0960327107084539
78) Kintz P., Ginet M., Marques N. and Cirimele V.; Arsenic speciation of two specimens of Napoleon's hair. Forensic. Sci. Int. 2007; 170:204-6. https://doi.org/10.1016/j.forsciint.2007.02.035
79) Gao S., Duan X., Wang X., Dong D., Liu D., Li X., Sun G. and Li B.; Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion Food Chem. Toxicol. 2013;59: 739-47. https://doi.org/10.1016/j.fct.2013.07.032
80) Muthumani M. and Prabu S.M.; Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipemia in rats. Cardiovasc. Toxicol. 2014;14:83-97. https://doi.org/10.1007/s12012-013-9227-x
81) Lloyd J. U.; Physostigma venenosum (calabar). Reprinted from “THE WESTERN DRUGGIST”, Chicago June 1897. https://www.swsbm.com/
82) Ledermann W.; Simón Bolivar y las catáridas. Rev. Chi. Infec. 2007;24: 409-12. http://dx.doi.org/10.4067/S0716-10182007000500012
83) Auwearter P. G., Dave J. and Mackowiak P. A.; Simon Bolivar´s Medical Labyrint: an infectious diseases conundrum. CID 2011;52:78-85. https://doi.org/10.1093/cid/ciq071
84) Bedate H., Sainz C. Brugger A. J. and Esplugues J.; Acción del Persantin sobre la intoxicación cianhídrica. Rev. Esp. Fisiol. 1966;22;25-30. https://revistas.unav.edu/index.php/ref/index
85) Papaloucas M., Papaloucas C. and Stergioulas A.; Ricin and assassination of Georgi Marcov. Pak. J. Biol. Sci. 2008;11:2370-1. https://doi.org/10.3923/pjbs.2008.2370.2371
86) Musshoff F. and Madea B.; Ricin poisoning and forensic toxicology. Drug Test Anal. 2009;1: 184-91. https://doi.org/10.1002/dta.27
87) Spivak L. and Hendrickson R.G.; Ricin. Crit. Care Clin. 2005;21:815-24. https://doi.org/10.1016/j.ccc.2005.06.006
88) Doan L.G.; Ricin: mechanism of toxicity, clinical manifestations, and vaccine development. A review. J. Toxicol. Clin. Toxicol. 2004;42:201-8. https://doi.org/10.1081/CLT-120030945
89) Thornton S.L., Darracq M., Lo J. and Cantrell F.L.; Castor bean seeds ingestion: a state wide poison control system´s experience. Clin. Toxicol. (Phila) 2014;54:265-8. https://doi.org/10.3109/15563650.2014.892124
90) Hartley M.R. and Lord J.M.; Cytotoxic ribosome-inactivacting lectins from plants. Biochim. Biophys. Acta 2004;1701:1-14. https://doi.org/10.1016/j.bbapap.2004.06.004
91) Weissmann-Brenner A., Brenner B, Kats L. and Hourvitz A.; Ricin - from a bulgarian umbrella to an optional treatment of cancer. Harefuah 2002;14:153-6 . https://europepmc.org/article/med/11905087
92) Olsness S.; The history of ricin, abrin and related toxins. Toxicon 2004;44:361-70. https://doi.org/10.1016/j.toxicon.2004.05.003

Downloads
Published
Data Availability Statement
All data generated or analyzed during this study are available from the corresponding author upon reasonable request. The datasets supporting the conclusions of this article have been securely archived and can be accessed for further assessment, subject to ethical and legal considerations. This work has been published in the Swiss Journal of Radiology and Nuclear Medicine.
Issue
Section
License
Copyright (c) 2025 Prof. Dr. Arturo J. Brugger Aubán

This work is licensed under a Creative Commons Attribution 4.0 International License.
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.