Study of Multimodality Imaging Features of Brown Tumor or Osteitis Fibrosa Cystica

Dhruv Patel¹, Abhijeet Ashok Salunke¹,², Nandial Bharwani¹, Ritesh Suthar², Umank Tripathi¹, Varun M¹, Dipesh Dave¹, Keval Patel¹, Vikas Warikoo¹, Jebin Aron¹, Rahul Shah¹, Shashank Pandya¹

Department of Surgical Oncology, The Gujarat Cancer and Research Institute, Ahmedabad, India
Department of Nuclear Medicine, The Gujarat Cancer and Research Institute, Ahmedabad, India

Abstract

Introduction
Brown tumor, also known as osteitis fibrosa cystica, is a rare but significant manifestation of hyperparathyroidism characterized by focal bone lesions resulting from excessive osteoclastic activity. Despite its rarity, Brown tumor poses diagnostic challenges due to its varied clinical presentations and radiographic features, often mimicking other bone lesions such as giant cell tumors or metastatic disease.

Material and Methods
In this study, we present a retrospective analysis of 6 cases of Brown tumor diagnosed and managed at our institution over a 12 months period from April 2022 to April 2023. Our objectives are to delineate the diverse clinical manifestations of Brown tumor, discuss diagnostic modalities utilized, treatment strategies employed, and evaluate patient outcomes.

Results
Five out of our six patients were females. Also 5 out of our 6 patients were under the age of 25. 2 patients presented to us with multiple lytic lesions and other 4 patients had solitary lesions. 1 patient out of 6 presented to us with pathological fracture. Only 2 out of the 6 patients had a positive sestamibi scan but Ultrasonography (USG) of the neck and MRI of the neck showed the presence of parathyroid adenoma in all the cases. Preoperative average of VAS score in this patients was 67 which was decreased to as low as 24. We performed paired t-tests on the blood investigation values and Visual Analog Scale (VAS) scores for all patients. The results were statistically significant, with values returning to normal three months post-surgery..

Conclusion
When radiographic evidence of a lytic lesion and hypercalcemia are present, Brown tumor should always be considered in the differential diagnosis. Brown tumor has a distinctive imaging appearance, with solid components displaying intermediate to low intensity on T1- and T2-weighted images, while the cystic components appear hyperintense on T2-weighted images and exhibit fluid-fluid levels. MRI of the neck corroborates the ultrasound findings and detects parathyroid adenomas as hyperintense nodes on T2-weighted images. Parathyroidectomy yields excellent results, enabling conservative management of lytic lesions.

Keywords: Brown tumor, parathyroidectomy, sestamibi scan, parathyroid adenoma, osteitis fibrosa cystica

¹Corresponding author: Abhijeet Ashok Salunke - received: 10.07.2024 - peer reviewed, accepted and published: 31.07.2024
Introduction

Brown tumors are non-neoplastic lesions resulting from abnormal bone metabolism in hyperparathyroidism (1). They have been described in both primary and secondary hyperparathyroidism as resulting from an imbalance of osteoclastic and osteoblastic activity with bone resorption exceeding the bone formation (1).

Brown tumor, also known as osteitis fibrosa cystica, is a rare but significant manifestation of hyperparathyroidism characterized by focal bone lesions resulting from excessive osteoclastic activity. Historically associated with advanced primary hyperparathyroidism, Brown tumor is now increasingly recognized in the context of secondary and tertiary hyperparathyroidism, particularly in patients with chronic kidney disease (2).

Primary hyperparathyroidism (PHPT) is a systemic disease caused by lesions of the parathyroid gland (such as parathyroid adenoma, parathyroid hyperplasia, and parathyroid carcinoma) (3). PHPT leads to the synthesis and secretion of parathyroid hormone (PTH) and causes calcium, phosphorous and bone metabolism disorders. The main clinical manifestations are bone diseases with increased bone resorption, hypercalcemia-induced urinary calculi, hypercalcemia, and hypophosphatemia (4). Despite its rarity, Brown tumor poses diagnostic challenges due to its varied clinical presentations and radiographic features, often mimicking other bone lesions such as giant cell tumors or metastatic disease (5). Additionally, the management of Brown tumor requires a multidisciplinary approach involving endocrinologists, radiologists, surgeons, and nephrologists to address the underlying hyperparathyroidism and its associated complications (6). To the best of our knowledge, the literature on Brown tumor is limited to case reports and small case series.

In this case series, we present a retrospective analysis of 6 cases of Brown tumor diagnosed and managed at our Institution Gujarat Cancer and Research Institute over a 12 months period from April 2022 to April 2023. Our objectives are to delineate the diverse clinical manifestations of Brown tumor, discuss diagnostic modalities utilized, treatment strategies employed, and evaluate patient outcomes. Through this series, we aim to contribute to the existing body of literature on Brown tumor. Additionally, we seek to highlight the importance of early recognition and comprehensive management of hyperparathyroidism to mitigate the morbidity associated with Brown tumor and improve patient outcomes.

Materials and Methods

Most patients present with pain and swelling at one or multiple sites, and many also present with pathological fractures. We conduct a thorough investigation for cystic lytic lesions in each patient, including serum calcium, phosphorus, parathyroid hormone (PTH), alkaline phosphatase levels, and localized X-rays and magnetic resonance imaging (MRI).

Laboratory tests revealed elevated levels of serum calcium and PTH, which are characteristic of hyperparathyroidism. We evaluated serum phosphorus levels, which may be low in primary hyperparathyroidism and elevated in secondary hyperparathyroidism. Serum alkaline phosphatase levels which may be elevated due to increased bone turnover. In this study we present a retrospective analysis of 6 cases of Brown tumor diagnosed and managed at our Institution over a 12 months period from April 2022 to April 2023.

We were able to identify these patients based on their elevated PTH levels and deranged serum calcium, phosphorus and alkaline phosphatase with cystic lytic lesions. Also serum vitamin D3 was checked upon. And CT-Scan of paranasal sinus, thorax, abdomen and pelvis of all the patients was performed to find out any other subclinical lesions which were present in the body. Detailed imaging of all the involved parts was done. Imaging studies play a crucial role in the localization and characterization of parathyroid adenomas, which are the most common cause of primary hyperparathyroidism.

All the patients were then investigated with Ultrasonogram (USG) of Neck, MRI Neck, and Technetium-99m Sestamibi Scan (MIBI Scan). These imaging studies are often used in combination to localize parathyroid adenomas accurately and guide surgical intervention, leading to improved outcomes for patients with primary hyperparathyroidism.

These patients were then referred to our Head and Neck Department, for parathyroid management and our bone lesions were managed conservatively till then. One patient which had pathological fracture was also managed conservatively (Table 1). Parathyroidectomy was done in all the patients and sequential blood investigations revealed normalising of the deranged values. Also
vitamin D3 deficient patients were given vitamin D3 supplementation in the form of 60'000 IU per week for 8 weeks followed by 60'000 IU monthly for 6 months. Serum PTH normalised in all the patients by 3 months postoperatively. Serum calcium, phosphorus and alkaline phosphatase values were also normalised. Patients VAS scores were analysed which were significantly decreased post operatively. Post operative sequential X-rays were performed and amount of sclerosis, reduction in cavity of lytic lesions, subperiosteal bone resorption were documented. And if there was a pathological fracture then the healing process of the fracture was noticed. There was significant sclerosis observed post operatively in all the patients and reduction in cavity of lytic lesions.

Case Presentation

A 20-year-old female presented to an outpatient clinic with pain and swelling around his right shoulder, persisting for six months. The swelling had progressively worsened over the past one and a half months. She had no family history of similar issues, no history of trauma, and no medical comorbidities. Clinical Examination revealed swelling on right proximal humerus with tenderness on pressure. There was no warmth, redness, or neurovascular deficit observed around the shoulder.

Imaging:

- X-rays (Anteroposterior and Lateral Views) showed a well-defined lytic lesion with a cortical breach on the medial border of the proximal humerus. No periosteal reaction, calcification, or abnormal soft tissue was observed.
- Magnetic Resonance Imaging (MRI): Solid components were intermediate to low intensity on T1- and T2-weighted images, while the cystic components were hyperintense on T2-weighted images and showed fluid-fluid levels.

Blood Investigations:

Serum PTH levels of the patient was as high as 1133 ng/ml. Also serum calcium was 15.9 mg/dl and serum phosphorus was 1.62 mg/dl. Serum alkaline phosphatase was also very high 2153 (U/l). Due to this deranged values parathyroid adenoma was suspected and so Sestamibi scans, USG and MRI of the neck was done. Also computed tomography scan of paranasal sinus, thorax, abdomen and pelvis was done to find any other lesion in the body.

Ultrasonography of Neck: It showed presence of 3.5 cm x 2.5 cm x 1 cm nodes behind the thyroid area. Thus parathyroid adenoma was suspected.

Sestamibi Scans: Sestamibi scans of the neck showed no uptake and was found to be negative.

MRI Neck: MRI confirmed the findings of USG in the neck and parathyroid adenoma was found as hyperintense nodules on T2 scans.

Biopsy: Biopsy of the proximal left humerus was performed, and a brown spongy material consisting of several multinucleated giant cells without atypia was observed.
CT Scan: CT scan showed multiple lesions in the body like humerus, sternum, D7 vertebrae, bilateral clavicle, bilateral scapula, multiple ribs, maxilla, mandible, radius, ulna and also sphenoid and temporal bones. Local part X-rays of all the parts were done to evaluate the lesions.

Treatment: After all this confirmations the patient was referred to our Head and Neck department and parathyroidectomy of the patient was performed. Histopathology of the specimen confirmed parathyroid adenoma. All the blood investigations were normalised within one week after the surgery. A shoulder arm pouch was given for the pain in the right shoulder. Thus VAS scores reduced significantly at even one week after surgery.

Follow-up: The patient was monitored both clinically (through physical examination) and radiologically (with X-rays or other imaging and blood investigations). Follow-ups were conducted monthly for the first 3 months and afterwards every 3 months for up to 1 year. Follow up X-rays of all parts showed reduction in cavity size and significant sclerosis post operatively as a sign for healing.

Results
Five out of our 6 patients were females. Also 5 out of our 6 patients were under the age of 25. Two patients presented to us with multiple lytic lesions and other 4 patients had solitary lesions. One patient out of 6 presented to us with pathological fracture. All our patients are of extremities and none of spine or pelvis. Thus no neurological symptoms were present in clinical examination. The following table (Table 2) shows the average pre- and post-operative values of serum PTH, calcium, phosphorus and alkaline phosphase of all the patients. Only 2 out of the 6 patients had a positive sestamibi scan but USG of the neck and MRI of the neck showed the presence of parathyroid adenoma in all the cases. The final histopathology reports of the parathyroid tissue were parathyroid adenoma in all the cases.

Pre-operative average of VAS score in this patients was 67 which was decreased to as low as 24. We applied paired t-test to the values of blood investigations and VAS score to all the patients which was statistically significant and returned to normal values after 3 months of surgery (Table 2).
Discussion

PHPT is the third most common endocrine disease after diabetes and thyroid disease. Its incidence ranges from 0.025% to 0.065%, with the highest incidence in postmenopausal women (7,8,9). The abnormally increased secretion of PTH usually affects calcium levels, phosphate levels, and bone metabolism. It usually causes renal and skeletal manifestations. However, due to the routine blood calcium and phosphorus tests, PHPT is generally detected in the early stage. Therefore, most patients with PHPT are asymptomatic (10).

Brown tumour, which is one of the pathognomonic signs of PHPT, is a focal, tumour-like bony lesion caused by osteoclastic turnover of bone. Although it is reported that musculoskeletal manifestations in patients with PHPT can reach 54.7%, the incidence rate of brown tumor ranges from 1.5 to 4.5% (11,12).

The relationship between overt bone disease and primary hyperparathyroidism (PHPT) in regions lacking routine biochemical screening remains uncertain. It is yet to be determined whether this is due to delayed detection of PHPT or, as equally plausible, a result of excessive parathyroid hormone (PTH) activity exacerbated by insufficient or marginal vitamin D and calcium intake. With regard to the use of routine biochemical screening, it has been shown that when such practices become more common, the clinical presentation of PHPT becomes less severe (13).

Due to the high amount of patients presenting with lytic lesions, we made a common practice to have detailed blood investigations like serum calcium, serum phosphorus and alkaline phosphatase. Any derangement in the values of this investigations were then observed in detail with a wide array of radiological investigations to rule out Brown tumor. In this way we were able to diagnose 6 cases of Brown tumor. The histopathological presentation of Brown tumors closely resembles that of giant cell tumors. Without the aid of blood tests and radiological investigations, our pathologists would likely have misdiagnosed these lytic lesions as giant cell tumors.

Our pre-biopsy investigations provided the pathologist with insights into abnormal serum parathyroid hormone levels, identifying Brown tumor as the primary differential diagnosis. We successfully managed all these lytic lesions without any additional operative intervention, relying solely on parathyroidectomy and vitamin D3 supplementation as recommended by our endocrinologist.

All lesions slowly regressed and the patients were asymptomatic from a period of 30 days post operatively to 6 months. Brown tumor in extremities is a rare presentation or even misdiagnosed as a Giant Cell Tumour and is very rarely
reported. We present a case series involving six patients diagnosed with brown tumors who were treated exclusively with parathyroidectomy.

We compared 19 other studies from 2016 to 2020 on Brown tumors of the extremities and this was the comprehensive review of literature (Table 3). To our knowledge this is the most comprehensive collection of Brown tumor of appendicular skeleton. The limitation of the current study was its retrospective nature and small number of patients. Thus we suggest a multi-center study with a larger number of patients in future studies.

Conclusion

When radiographic evidence of a lytic lesion and hypercalcemia are present, Brown tumor should always be considered in the differential diagnosis. Brown tumor has distinctive imaging appearance

Table 1 Clinical and demographic features of patients affected with brown tumor

<table>
<thead>
<tr>
<th>No</th>
<th>AGE</th>
<th>SEX</th>
<th>SITE</th>
<th>RADIOGRAPHIC FEATURES</th>
<th>SERUM PTH (pg/ml)</th>
<th>SERUM CALCIUM (mg/dl)</th>
<th>SERUM PHOSPHORUS (mg/dl)</th>
<th>SERUM ALKALINE PHOSPHATASE (IU/l)</th>
<th>HIPPATHOLOGY OF PARATHYROIDECTOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>F</td>
<td>1. proximal humerus (30mm x 30mm x 30mm x 1.5 cm)</td>
<td>3 x cedared bone monthly</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>F</td>
<td>1. humerus</td>
<td>2 x cedared bone</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>M</td>
<td>Femoral shaft pathological fracture (30mm x 30mm x 30mm x 0.5 cm)</td>
<td>3 x cedared bone monthly</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>M</td>
<td>1. distal femur</td>
<td>3 x cedared bone monthly</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>F</td>
<td>Pectoral muscle</td>
<td>2 x cedared bone</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>F</td>
<td>1. proximal tibia (30mm x 30mm x 30mm x 1.5 cm)</td>
<td>3 x cedared bone monthly</td>
<td>153</td>
<td>1128</td>
<td>3.3</td>
<td>9.2</td>
<td>positive parathyroid adenoma</td>
</tr>
</tbody>
</table>

Table 2 Statistical test applied on blood investigations

Table 3 Review of literature on Brown tumor of extremities

Study of Multimodality Imaging Features of Browns Tumor or Osteitis Fibrosa Cystica - Dhruv Patel et al.

and with solid components were intermediate to low intensity on T1- and T2-weighted images, while the cystic components were hyperintense on T2-weighted images and showed fluid-fluid levels. MRI of the neck confirms the findings of USG of the neck and parathyroid adenoma were found as hyperintense nodes on T2-weighted images. Parathyroidectomy has excellent results allowing us to manage lytic lesions conservatively.

Correspondence to:
Dr. Abhijeet Ashok Salunke
https://orcid.org/0000-0003-0103-8599
The Gujarat Cancer & Research Institute
Civil Hospital Campus, Asarwa,
Ahmedabad-380 016,
Gujarat, INDIA
Phone : +91-79- 2268 8000
Fax : +91-79-2268 5490

Conflict of interest:
The authors declare that there were no conflicts of interest within the meaning of the recommendations of the International Committee of Medical Journal Editors when the article was written. Further statements and declarations:
1. Ethical considerations: Institutional ethical review board clearance (IRC/2024/P43 meeting held on 30th May 2024).
2. Consent to participate: Written informed consent was obtained.
3. Consent for publication: Written informed consent was obtained.
4. Declaration of conflicting interests: The authors declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article.
5. Funding statement: Nil to declare.
6. Data availability statement: Not applicable.

Disclaimer/Publisher's Note:
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of Swiss J. Radiol. Nucl. Med. and/or the editor(s). Swiss J. Radiol. Nucl. Med. and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

License Policy:
This work is licensed under a Creative Commons Attribution 4.0 International License. This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.

References

