

Is Bigger Always Bad ? Evaluating Effect of Sedation on MRI-Based Optic Nerve Sheath Diameter Measurements in Children

Omair Ashraf Shah¹, Mudhabir Ashraf², Sumaira Maqbool³, [Akib Arfee](#)^{1*}

¹[Department of Radiodiagnosis and Imaging, Govt. Medical College Srinagar, India](#)

²[Department of Anaesthesia and Critical Care, Govt. Medical College Srinagar, India](#)

³[Department of Pediatrics and Neonatology, Sher-i- Kashmir Institute of Medical Sciences Srinagar, India](#)

Swiss Journal of Radiology and Nuclear Medicine - www.sjoranm.com - Rosenweg 3 in CH-6340 Baar, Switzerland

Abstract

Objectives

To assess the impact of sedation on optic nerve sheath diameter (ONSD) as measured by MRI in pediatric patients. ONSD is a widely accepted non-invasive marker for estimating raised intracranial pressure (ICP), but potential effects of sedation on its accuracy remain under-studied in children.

Materials and Methods

A retrospective observational study was conducted on brain MRI scans from pediatric patients aged 0–18 years. Patients were divided into two groups: those who received sedation and those who underwent MRI without sedation. Bilateral ONSD was measured at a standardized point 3 mm posterior to the globe on axial T2-weighted images. Inter-observer agreement was analyzed, and group comparisons used non-parametric statistical methods.

Results

Out of 78 pediatric patients, 38 received mild sedation and 40 were imaged without sedation. The mean ONSD in the non-sedated group was 4.8 ± 0.3 mm compared to 5.7 ± 0.4 mm in the non-sedated group ($p = 0.02$). This difference was statistically significant ($t(68.5) = -11.2$, $p < 0.01$, Cohen's $d = 2.53$). Age-stratified data affirmed a normal increase in ONSD across early childhood with stabilization during adolescence.

Conclusion

Sedation significantly influences ONSD measurements on MRI in pediatric patients. These findings highlight the need for careful consideration of sedation status when using ONSD as a surrogate for ICP. Age-related trends further highlight the importance of using adjusted reference values.

Keywords: Intracranial pressure; MRI; sedation; optic nerve sheath; children;

*Corresponding author: [Akib Arfee](#) - received: 13.12.2025 - peer reviewed, accepted and published: 31.01.2026

Introduction

Assessing intracranial pressure (ICP) accurately is critical in pediatric neurology, yet direct invasive monitoring techniques can pose significant risks and are often impractical in children. As a result, the optic nerve sheath diameter (ONSD) has gained attention as a non-invasive proxy for estimating ICP,

particularly through imaging techniques like MRI and ultrasound (1 – 3). While ultrasound offers rapid bedside evaluation, its operator-dependent nature can introduce variability. MRI, on the other hand, provides a high-resolution and reproducible alternative for ONSD measurement (4). However, performing MRI scans in children frequently necessitates sedation to reduce motion arti-

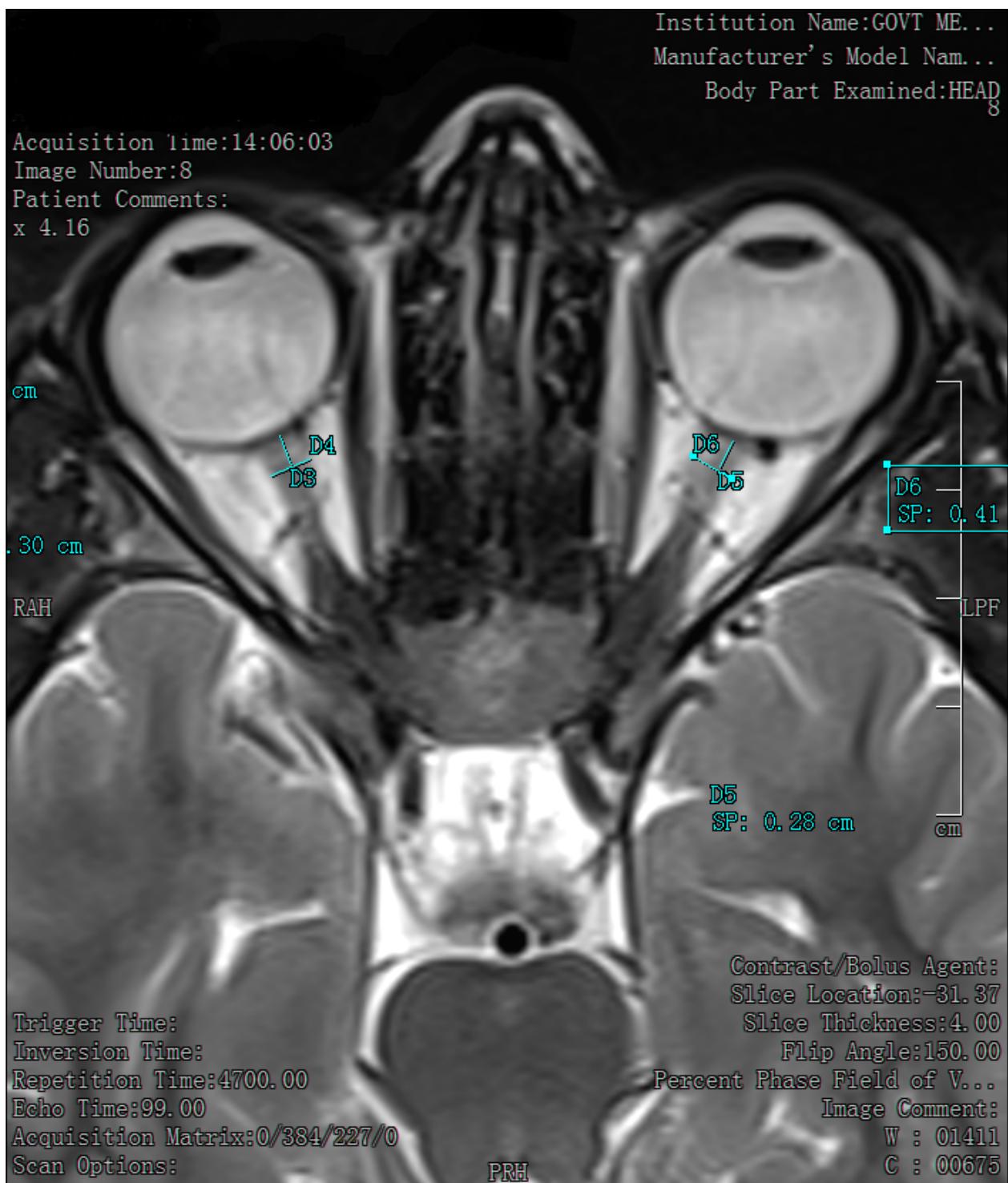


Fig 1 : ONSD 3mm behind the papilla in a non sedated patient.

facts. Sedative agents may potentially alter cerebral compliance, CO₂ levels, or cerebrospinal fluid dynamics—factors that could, in turn, influence imaging-based ONSD measurements. Although prior research has examined the effects of general anesthesia on ONSD, there is limited data on how commonly used sedatives impact these measurements (5, 6). This study investigates whether

sedation alters MRI-based ONSD readings in pediatric patients.

Materials and Methods

Study Population

We conducted a retrospective review of brain MRI scans performed at Government Medi-

cal College, Srinagar, India, between January 2024 and January 2025. Pediatric patients aged 0–18 years were included. Exclusion criteria included prior neurosurgical procedures, orbital pathology, poor image quality, or undocumented sedation status.

Grouping

Patients were categorized into two groups:

- **Sedated Group (n = 38):** Received Triclofos (oral), Ketamine (IV), or Midazolam (IV).
- **Non-Sedated Group (n = 40):** Underwent MRI without sedation.

Imaging Protocol and Analysis

MRI was performed using a 3.0T scanner. All patients underwent standard clinical MRI sequences, including T1-weighted, T2-FLAIR, T2-weighted, heme-sensitive (T2* GRE or SWI), and diffusion-weighted imaging. The orbital protocol included 2–3 mm thick axial and coronal slices, post-contrast T1, and T2 sequences with and without fat saturation. Sub-millimeter heavily T2-weighted volumetric images of the orbits were also acquired. ONSD was measured transversely at 3 mm behind the globe on slices demonstrating maximum sheath width (7, 8) (Fig 1 & 2).

Statistical Analysis

Continuous variables were tested for normality (Shapiro–Wilk). Normally distributed data are presented as mean \pm SD and compared using the independent-samples t-test. Categorical data were compared using the Chi-square test (or Fisher's exact when needed). Effect sizes were reported as Cohen's d for group differences and Spearman's ρ for correlations. Inter-observer agreement was assessed with ICC (>0.8 = excellent). A p-value < 0.05 was considered statistically significant.

Results

Demographics

A total of 78 pediatric patients were included (mean age 7.9 years; 40 males, 38 females). Age did not differ significantly between groups (sedated: 7.7 ± 3.6 years vs. non-sedated: 8.0 ± 3.9 years, $t(76) = -0.81$, $p = 0.42$). Sex distribution also showed no significant difference ($\chi^2 = 0.26$, $p = 0.61$).

ONSD Findings

Non-Sedated Group:

- Mean ONSD = 4.8 ± 0.3 mm

Sedated Group:

- Mean ONSD = 5.7 ± 0.4 mm ($t(68.5) = -11.2$, $p < 0.01$, Cohen's $d = 2.53$)

A positive correlation between age and ONSD was observed ($p < 0.01$), consistent with developmental trends. Inter-observer ICC for ONSD measurement was 0.93 (95% CI: 0.87–0.97), indicating excellent agreement.

Discussion

Our analysis reveals a statistically significant increase in MRI-based ONSD measurements among sedated children. The difference of nearly 1 mm between groups corresponds to a very large effect size (Cohen's $d = 2.5$), suggesting that sedation introduces clinically meaningful bias in estimating intracranial pressure. This suggests that sedation, even with non-anesthetic agents such as ketamine or midazolam, may impact ONSD values and potentially lead to overestimation of ICP. The optic nerve sheath is a direct extension of the intracranial subarachnoid space, which allows transmission of intracranial pressure changes into the orbit. Thus, artificially elevated ONSD in sedated patients may reflect transient physiological changes rather than true ICP elevations.

Our results align with prior literature confirming the positive correlation between ICP and ONSD (9 – 12). We also reaffirm the known developmental increase in ONSD with age (13), underscoring the importance of age-adjusted interpretation. Clinically, these findings emphasize the need for caution when evaluating ONSD in sedated pediatric patients. Agent-specific correction factors may improve diagnostic accuracy. Future research, ideally with simultaneous invasive ICP measurements, is warranted to establish a more definitive relationship between sedation, ONSD, and true intracranial dynamics.

Clinical Implications

- Risk of Overestimation: Sedation-related ONSD expansion may mimic elevated ICP.
- Need for Adjustments: Agent-specific effects should be accounted for when interpreting ONSD.

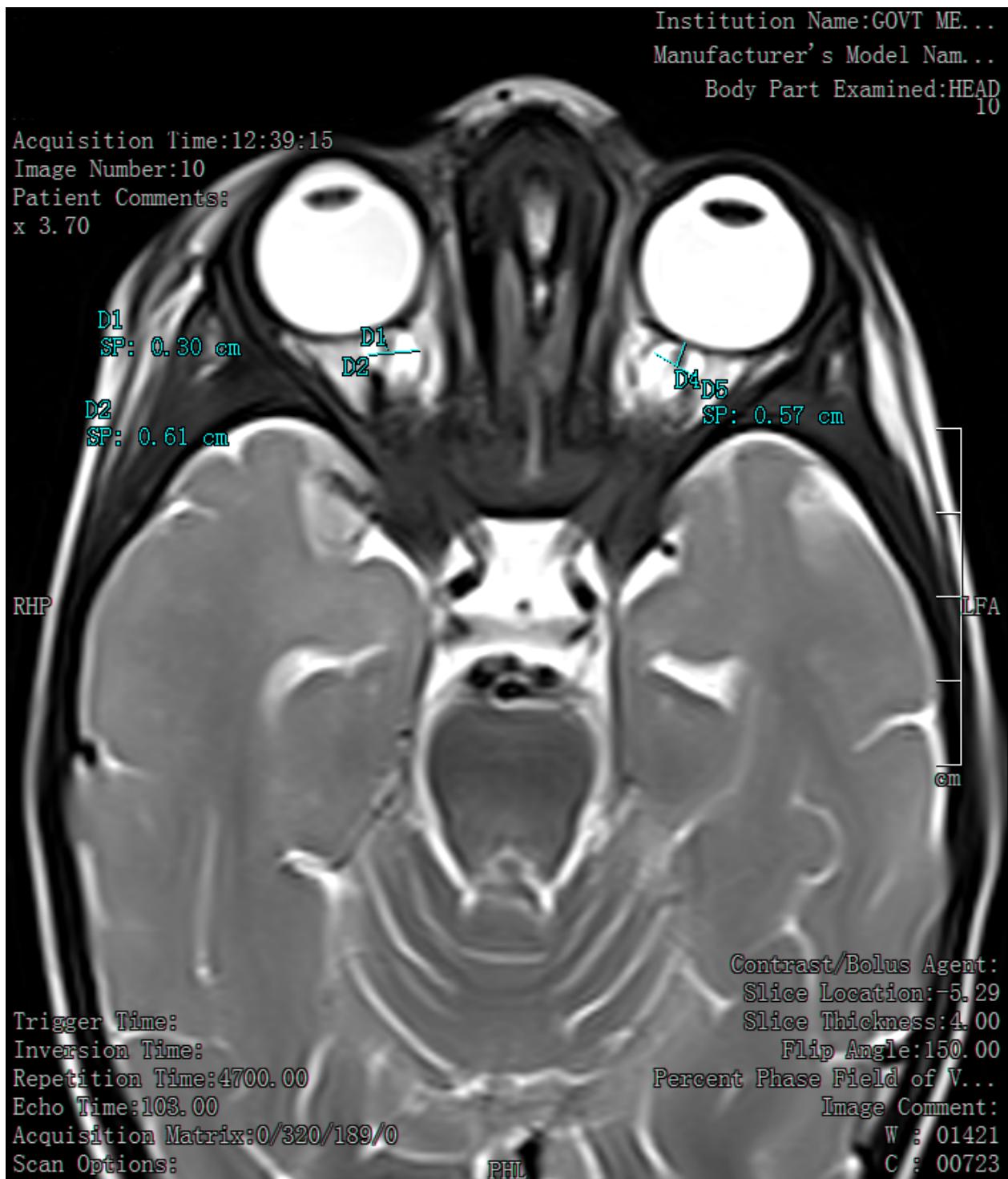


Fig 2 : ONSD 3mm behind the papilla in a sedated patient.

- Future Research: Prospective studies with invasive ICP monitoring are needed to validate these findings.

Limitations

This study is limited by its retrospective design, absence of invasive ICP measure-

ments, and variability in sedation documentation. These factors may introduce bias and reduce the generalizability of findings.

Conclusion

Sedation markedly increases MRI-based ONSD measurements in pediatric patients, with a very large effect size. This expansion

likely reflects transient physiological changes rather than true ICP elevation. Careful interpretation of ONSD values is essential when evaluating sedated children. Further studies are needed to refine imaging protocols and develop correction strategies for improved diagnostic precision.

Correspondence to:

Akib Arfee

[Department of Radiodiagnosis and Imaging, Govt. Medical College Srinagar, India](#)

DEPARTMENT OF RADIO DIAGNOSIS AND IMAGING

Declarations

Consent for publication: The author clarifies that written informed consent was obtained and the anonymity of the patient was ensured. This study submitted to Swiss J. Rad. Nucl. Med. has been conducted in accordance with the Declaration of Helsinki and according to requirements of all applicable local and international standards. All authors contributed to the conception and design of the manuscript, participated in drafting and revising the content critically for important intellectual input, and approved the final version for publication. Each author agrees to be accountable for all aspects of the work, ensuring its accuracy and integrity.

Competing interests: None.

Funding: No funding was required for this study.

Conflict of interest:

The authors declare that there were no conflicts of interest within the meaning of the recommendations of the International Committee of Medical Journal Editors when the article was written.

Disclaimer/Publisher's Note:

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of Swiss J. Radiol. Nucl. Med. and/or the editor(s). Swiss J. Radiol. Nucl. Med. and/or the

editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

License Policy:

This work is licensed under a Creative Commons Attribution 4.0 International License.

This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.

[SJORANM-LinkedIn:](#)

Check out our [journal's LinkedIn profile](#) with over 11K registered followers from the Radiologic & Nuclear Medicine Imaging field.

References

1. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. *Neurocrit Care* 2011;15(3):506-515.
<https://doi.org/10.1007/s12028-011-9606-8>
2. Koziarz A, Sne N, Kegel F, et al. Bedside optic nerve ultrasonography for diagnosing increased intracranial pressure: A systematic review and meta-analysis. *Ann Intern Med* 2019;171(12):896-905.
<https://doi.org/10.7326/M19-0812>
3. D'Antona L, Asif H, Craven CL, et al. Brain MRI and ophthalmic biomarkers of intracranial pressure. *Neurology* 2021;96(22):e2714-e2723.
<https://doi.org/10.1212/WNL.0000000000012023>
4. Sallam A, Abdelaal Ahmed Mahmoud MAA, Kamel MG, et al. The diagnostic accuracy of noninvasive methods to measure the intracranial pressure: A systematic review and meta-analysis. *Anesth Analg* 2021;132(3):686-695.
<https://doi.org/10.1213/ANE.0000000000005189>

5. Gallagher A, Pike M, Berg S. Beware CSF pressure measured under general anaesthesia. *Arch Dis Child* 2004;89(7):691.
<https://doi.org/10.1136/adc.2003.032177>
6. Kim Y, Choi S, Kang S, Park B. Propofol affects optic nerve sheath diameter less than Sevoflurane during robotic surgery in the steep Trendelenburg position. *Biomed Res Int* 2019;2019:5617815.
<https://doi.org/10.1155/2019/5617815>
7. Geeraerts T, Newcombe VF, Coles JP, et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. *Crit Care* 2008;12(5):R114.
<https://doi.org/10.1186/cc7006>
8. Onder H, Goksungur G, Eliacik S, Ulusoy EK, Arslan G. The significance of ONSD, ONSD/ETD ratio, and other neuroimaging parameters in idiopathic intracranial hypertension. *Neurol Res* 2021;43(12):1098-1106.
<https://doi.org/10.1080/01616412.2021.1949688>
9. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. *Neurocrit Care* 2011;15(3):506-515.
<https://doi.org/10.1007/s12028-011-9606-8>
10. Koziarz A, Snej N, Kegel F, et al. Bedside optic nerve ultrasonography for diagnosing increased intracranial pressure: A systematic review and meta-analysis. *Ann Intern Med* 2019;171(12):896-905.
<https://doi.org/10.7326/M19-0812>
11. Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. *Acad Emerg Med* 2003;10(4):376-381. <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1553-2712.2003.tb01352.x>
12. Maissan IM, Dirven PJ, Haitsma IK, Hoeks SE, Gommers D, Stolk R. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. *J Neurosurg* 2015;123(3):743-747.
<https://doi.org/10.3171/2014.10.JNS141197>
13. Cardim D, Czosnyka M, Chandrapatham K, Badenes R, Bertuccio A, Noto AD, Donnelly J, Pelosi P, Ball L, Hutchinson PJ, Robba C. Effects of Age and Sex on Optic Nerve Sheath Diameter in Healthy Volunteers and Patients With Traumatic Brain Injury. *Front Neurol*. 2020 Aug 7;11:764. PMID: 32849220; PMCID: PMC7426488.
<https://doi.org/10.3389/fneur.2020.00764>